
91

Page 91-106

Received: 15 October 2022 Accepted: 15 February 2023

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming
at Secondary School Level Using Interactive Qualitative Analysis (IQA)

Perera, K. G. S. K.

susil.p@sliit.lk
School of Education, Faculty of Humanities and Sciences, SLIIT, Malabe, Sri Lanka.

Abstract

Computer programming is viewed and experienced as a subject cognitively challenging to
students as well as teachers. The aim of this study was to determine the Information and
Communication Technology (ICT) teachers’ perspective towards teaching computer
programming in order to comprehend how ICT teachers perceive teaching computer
programming and factors that influence their work. Forty-seven ICT teachers participated
in this qualitative study. The research method used was an analytical framework known as
Interactive Qualitative Analysis to model the ICT teachers’ perspective. The perspective was
modelled in terms of affinities (factors) such as the programming curriculum, ICT resources,
time, programming language, evaluation, students’ performance, teachers’ programming
skills, teachers’ pedagogical programming knowledge, student and professional development
programs. Further, the interaction among these affinities was also modelled. Programming
curriculum was found to be the most influential affinity which should be revised to decrease the
cognitive load on students. Teacher’s ICT knowledge was the most influenced(or influential???)
affinity which can be improved by ICT resources, professional development programs and
evaluation policy on students. Increase in computer: student ratio is also a contributing factor
to students’ achievement.

Keywords: Interactive Qualitative Analysis, Programming Curriculum, Teachers’ Perspective
of Computer Programming,

Introduction

Introduction of ICT as an optional subject to
the Sri Lankan school system at (GCE (OL)
took place in 2007 (National Institute of
Education, 2008). It has been observed that
the candidates’ performance in answering

questions in ICT paper in GCE(OL) is poor.
Furthermore, the majority of ICT teachers
who teach students of GCE(OL) are less
comfortable with computer programming.

DOI: https://doi.org/10.4038/sjhs.v3i1.54

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming at
Secondary School Level Using Interactive Qualitative Analysis (IQA)

92

Instructional strategies in programming

Students also perceive programming as an
uncomfortable experience and tend to develop
negative attitudes (Korkmaz, 2014). Although
students’ IQ and mathematical skills seem
to have a bearing on learning programming,
how gender or nationality is significantly
related to it is not supported in literature (Ala-
Mutka, 2004). Poor instructional methods
and overlooking of students’ different learning
styles lead to unsuccessful learning (Korkmaz,
2014). However, even teachers have found
that teaching programming is a difficult task
(Yang et al., 2015). Nevertheless, studies
have not been carried out to find the reasons
for such a difficulty. Traditional teaching
methods based on lectures or demonstration
of the use of language syntaxes are found
to be frequently demotivating students.
Therefore, pedagogy of programming must
be changed to create more interesting game-
like methods for program learning. With the
support of multimedia building-blocks even
younger students could learn programming
concepts without much difficulty (Maloney
et al., 2008), buthow to teach programming
at secondary school level is yet to be solved.
Teachers must be graduated in a subject where
computer programming is seriously taught
and in contrast, traditional in-service training
to convert non-ICT teachers to ICT teachers
would be unlikely to build a teacher capable
of teaching programming.

Pedagogical Content Knowledge (PCK) of
teachers plays an important role in teaching
programming. PCK has been defined as
the knowledge that allows teachers to
transform their knowledge of the subject into
something accessible for their students. This

is basically how to teach a subject so that
students understand the subject better, thereby
producing a good learning outcome (Shulman,
1986;). PCK for programming addresses
issues like reasons to teach programming,
what concepts needed to be taught, how the
instruction needs to be designed, what the
most common difficulties students confront
and common misconceptions they make (Saeli
et al., 2011). The procedure that teachers
generally adopt in teaching programming
is teaching the vocabulary and the syntax of
the language first and then guide students to
develop programming strategies. The actual
difficulty in learning programming is not
set in learning the syntax or key words of a
language but in the designing of the algorithm
(Ala-Mutka, 2004).

Research conducted by Dag and Durdu (2020)
found that knowledge and skill required by
ICT teachers in teaching programming at
secondary school level is limited. Failures in
teaching computer programming is usually
assigned to the methods adopted by teachers,
particularly aspects like poor representation
of the problems to be solved. Some teachers
limit their teaching to explanation of
theories behind programming, like syntax
and use of keywords, without providing
sufficient practical opportunities to solve
problems and trying them out on computers.
Sometimes it is not possible to do this due to
the lack of computers to meet the standard
student to computer ratio. Exposure to
practical programming tasks is essential in
understanding both syntax and semantics
of programming. This hands-on experience
comes first in pedagogy (Salleh et al., 2013).

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming at
Secondary School Level Using Interactive Qualitative Analysis (IQA)

Page 91-106

93

Problem-based teaching is also an effective
method but must be coupled with laboratory
experience. However, command style teaching
is to be discouraged. For a better learning
outcome one of the best approaches to follow
is to identify the problem, determine inputs
and outputs, design the algorithm, document
the algorithm using flowcharts, conversion
into pseudo code and finally coding using
a programming language to test and debug
(Sarpong et al., 2013; Garner, 2007). There is a
scarcity of research regarding the pedagogy of
computer programming such as how different
teaching methods affect students despite the
availability of several visual programming
environments. However, different countries
treat programming education at school level
with varying weightages for programming
concepts (Makris et al., 2013).

The best way to teach programming is
believed to be that you begin at as lower
grades as possible (European, 2015). In South
Korea, starting from as early as Grade 7,
programming includes more difficult topics as
sorting, binary trees, graph traversals etcetera.
However, Object Oriented Programming
is not expected in this case. Teaching ICT,
such as computer literacy and Computer
Driving Licenses which are limited to the use
of computers for general purposes instead
of Computer Science, may not be helpful to
students in Grades lower than 10 or so; to
develop programming skills. In India, where
computer education is not compulsory as in
Sri Lanka, it is an elective subject from 9th
Grade onwards (Jones et al., 2011). This was
the situation in 2011 but it is expected to be
changed in the years to follow. In Greece, at
the inception of computer education at school
level some of the teachers were direct recruits

from those who graduated in computing. These
teachers were not trained in pedagogy. The
other teachers were those who were converted
from other disciplines like Mathematics or
Science subjects. This was a fast-track process
and, while teaching they concentrated more
on application of computers with a lesser
emphasis on programming (Jones et al., 2011).

Interactive qualitative analysis (IQA)

IQA is a systems approach to qualitative
research developed by Northcutt and McCoy
of The University of Texas at Austin in
2004. IQA provides a framework to engage
participants as a focus group and as individual
interviewees to ground rich contextual
data of the issue under study (Northcutt &
McCoy 2004, p16). Follow-up interviews of
participants are conducted to probe deeply into
the constructs of the phenomenon surfaced
via quantitative analysis of data (Bargate,
2014). One prominent advantage, among
other things, of the IQA method is lowering
of the researcher’s direct involvement and
minimizing of the subjectivity in interpretation
of data. (Lasserre-Cortez, 2006). With IQA,
constituents generate and interpret their
own data while the researcher facilitates the
process. The method involves generating data
through two phases conducting a focus group
session with participants and semi-structured
individual interviews of participants. In
this study IQA study answers at most two
“generic” research questions: (i) what are the
components of the phenomenon? and (ii)
how do the components relate to each other
in a perceptual system? (Northcutt & McCoy,
2004, p. 77). There are four stages of IQA
research flow namely (i) research design, (ii)
focus group brainstorming, (iii) interview,

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming at
Secondary School Level Using Interactive Qualitative Analysis (IQA)

Page 91-106

94

and (iv) report. In the first stage the research
problem was enunciated, research questions
were raised and participants were identified.
Since of late, IQA is gaining popularity in
qualitative research as an analytical frame

Figure 1.
Interactive qualitative analysis research flow (Northcutt & McCoy, 2004. p 45).

Objectives of the study

In view of the above explanation, objectives
of the study are to

•	 identify the contributing factors
(affinities) towards the perceptions of
the ICT teachers in teaching computer
programming.

•	 develop a model to represent the
perspective of ICT teachers towards
teaching computer programming at
GCE(OL).

Materials and Methods
Research design

The perspectives were studied employing
IQA which is based on the systems approach.
The design of the research with IQA consists
of three significant steps: (a) statement of the
problem, (b) definition of constituency groups
and (c) the formulation of the research question
(Northcutt & McCoy, 2004). According to the
IQA framework, the perspectives are formed
in terms of affinities towards the integration
of ICT in the classroom and it is a qualitative
approach.

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming at
Secondary School Level Using Interactive Qualitative Analysis (IQA)

Page 91-106

to expound constituents’ perspectives in
phenomena under study (Bargate, 2014; Davis,
2019; Behling, Lenzi, & Rossetto,2022). The
IQA research flow is illustrated by the figure1.

95

Sample and instruments

The characteristics of the participants were
determined according to the guidance in IQA.
In IQA terminology, participants are called
the focus group. It is defined as a “group of
individuals who may certainly have varied
opinions and experiences with the system
under study but more critically share a
common perspective” (Northcutt & McCoy,
2004, p 47). A sample of 47 ICT teachers were
purposively selected from high, moderate,
and less privileged government schools
of Western, Southern and North-Western
provinces. This sample size is sufficient for
studies using IQA (Northcut & McCoy, 2004).

In the IQA framework, two instruments used
were: (i) guidance for initial brainstorming
on the expected 47 participants and (ii) the
Interview Protocol (IP) which was the main
instrument. The IP was utilized to interview
participants and the content of the IP cannot
be predetermined as it would be based on the
affinities (categories of data) generated in the
first stage of data collection process.

Data collection

In the first phase- silent brainstorming,
the participants wrote down, on the cards
provided, their perceptions (thoughts,
feelings, reflections and experiences) of the
issue being studied. Then these perceptions
(data) were grouped and regrouped by the
participants until further grouping was
not logical. Each final group was labelled
according to the nature of data and tilted
as affinities. “Affinity is a set of textual
references that have an underlying meaning
or theme” (Northcutt & McCoy, 2004, p 81).

Each affinity was provided with a description
with the help of participants. This process is
called open, inductive and axial coding in
IQA (Ref. block number 1.0 of Figure 1). The
information the participants provided was
recorded in Individual Interview Axial Code
Table (Table 1).

Table 1.
Combined interview axial code table for
affinity 1 (for example).

Teacher No. Axial
Quotation

Researcher’s
Note

The next step is referred to as theoretical
coding in IQA in which pair-wise influences
(relationships) of one affinity on another, if
such influence exists, were determined. In
this process, each participant was asked to
identify influence pairs of affinities (affinity 1
influences affinity 2 etc.) and document them
with reasons for each influence (Block number
5.1 of the Figure 1). Such documentation is
illustrated in the Table 2.

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming at
Secondary School Level Using Interactive Qualitative Analysis (IQA)

Page 91-106

96

Table 2.
Theoretical code affinity relationships.

Affinity
Relationship

Teacher No. Theoretical Quotation Researcher’s Note

1─►2 1 <reasons for the relationship>.
2 <reasons for the relationship>.

The next step was to construct the Table 3. For
this purpose, the number of teachers who had
mentioned a given relationship between two
affinities, in the same direction (eg. 1─►2),

was counted and placed as frequency for
that relationship. This table was the basis for
analysis of data and this process is described
in the block 5.2 of the Figure 1.

Table 3.

Affinities pairs in descending order of frequency with power analysis.

No. Affinity Pair
Relationship

Frequency
(sorted in
descending
order)

Cumulative
frequency

Cumulative
Percent
(Relation)

Cumulative
Percent
(Frequency)

Power

Cumulative percent (relation) =
number of cumulative relationships (cp)

x 100number of possible influence pairs (p)

Where p=NP2 and N=number of affinities. cp =1,2,3... p

Cumulative Percent (Frequency) =
frequency for a relationship

x 100Cumulative frequency for all relationships

Power=Cumulative Percent(frequency)- Cumulative Percent(relation), which is an index of
the degree of optimization of the system for a given relationship. Cut-off point of the Frequency
Table (Table 3) is determined when the Power reaches the maximum as per MinMax criterion.
IQA adopts the Pareto principle to statistically determine which of the inter-relationships
should be included in the Interrelationship Diagram (IRD). The Pareto principle or 80/20 rule
observes that 20% of the variables in a system will account for 80% of the total variation in
outcomes in the system (Northcutt & McCoy, 2004).

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming at
Secondary School Level Using Interactive Qualitative Analysis (IQA)

Page 91-106

97

Table 4.
Interrelationship diagram.

Affinity 1 2 3 4 5 6 7 8 9 10 OUT IN Δ Tentative assignment
of the status to
affinity

1 U U U U U U U U X 8 1 Type Affinity name

Interrelationship Diagram (Table 4) was
created as the first step to rationalize
the system. This is called the tentative
determination of drivers and outcomes. In this
case, significant relationships of the Table 3
(1 to 43rd relationships) were tabulated in the
Table 4. The “U” indicates that the left-hand
side affinity (1) “influences” (2,3 etc.) and
“X” indicates it is “influenced”. “OUT” is
the sum of “U”s and “IN” is the sum of “X”s
for each affinity. Delta (Δ) is equal to OUT-
IN. This categorization assists in the topology
design of cluttered System Influence Diagram
(SID).

The relationship pairs at and above where the
Power reached maximum were considered
to construct concept map like relationship
(among affinities) diagram which is titled
as Cluttered System Influence Diagram
(Cluttered SID). This diagram is optimized
to arrive at uncluttered SID by removal of
redundant relationships among affinities.
Redundant link is defined as “a link between

two affinities in which, even if removed, a path
from the driver to the outcome can be achieved
through an intermediary affinity” (Northcutt
& McCoy, 2004, p 178). Uncluttered SID is
useful to simplify the system and optimise
its explanatory power. The cluttered SID was
used as a basis for preparing the script for
individual interviews in order to get an insight
into the issue under study (block 10 of the
Figure 1).

Results and Discussion

The 47 participants produced 224 ideas. After
inductive and axial coding, ten affinities were
identified as (1) Programming Curriculum, (2)
ICT Resources, (3) Time, (4) Programming
Language, (5) Evaluation, (6) Performance, (7)
Teacher’s Programming Skill, (8) Teacher’s
Pedagogical Knowledge on Programming, (9)
Student and (10) Professional Development
Program. Table 5 represents a sample of
axial quotations for the affinity programming
curriculum.

Table 5.
Combined interview axial code table for affinity programming curriculum (sample).

Teacher No. Axial Quotation Researcher’s Note
1 Subject matter should be sequenced to attract

students’ attention and help them build
programming skills.

2 Programming syllabus is too difficult for students
to follow.

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming at
Secondary School Level Using Interactive Qualitative Analysis (IQA)

Page 91-106

98

In the next step, each participant was asked to identify influence pairs of affinities and document
them with reasons for each influence. Table 6 illustrates a sample of Theoretical Code Affinity
Relationships.

Table 6.
Theoretical code affinity relationships.

Affinity
Relationship

Teacher No. Theoretical Quotation Researcher’s Note

1─►2 1 Programming curriculum prescribes
the type of operating system needed.

2 Programming practical cannot be
done without the recommended
programming language software.

Frequencies (how many participants have mentioned a particular relationship between two
affinities) were calculated and tabulated in the descending order of frequency. Then the Table 7
was constructed as per the directions in IQA.

Table 7 illustrates calculation of Power and cut-off point to consider the relevant relationships.
(example 1─►4 means Programming Curriculum influences Programming Language (to be
selected for the curriculum).

Table 7.
 Affinities pairs in descending order of frequency with power analysis.

No. Affinity pair
Relationship

Frequency
Sorted
(Descending)

Cumulative
Frequency

Cumulative
Percent
(Relation)

Cumulative
Percent
(Frequency)

Power

1 1─►2 47 47 1.111 1.836 0.7248
2 1─►3 47 94 2.222 3.672 1.4497
3 1─►4 47 141 3.333 5.508 2.1745

Rest is here
42 7─►10 35 1815 46.667 70.898 24.2318
43 4─►1 29 1844 47.778 72.031 24.2535
44 6─►8 22 1866 48.889 72.891 24.0017

Rest is here
90 10─►1 10 2560 100 100 0

The cut-off point taken from the entire data set
of Table 7 was at 43rd relationship where the
power has reached its peak. It can be observed
that the first 43 relationships out of 90 i.e.

number of permutations or 10P2 (47% of the
total) account for 72% of the total variation to
be significant to construct the cluttered System
Influence Diagram (SID). In fact, in this study

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming at
Secondary School Level Using Interactive Qualitative Analysis (IQA)

Page 91-106

99

Power was maximum at 72% and it was used
as the cut-off point as it is closer to 80%
(Pareto statistics). Interrelationship Diagram
was created as the first step to rationalize the

system. In this case, significant relationships
of the Table 7 (1 to 43rd relationships) were
tabulated in the Table 8. This table was later
sorted in descending order of delta.

Table 8.
Interrelationship diagram.

Affinity 1 2 3 4 5 6 7 8 9 10 OUT IN Δ Tentative Assignment of the status to affinity

1 U U U U U U U U U 8 0 8 PD Programming Curriculum
2 X U U U U U 5 1 4 SD ICT Resources
3 X X X X X U 1 5 -4 SO Time
4 X U U U U U U 6 1 5 SD Programming Language
5 X U U U U 4 1 3 SD Evalution
6 X X U X X X X X X 1 8 -7 SO Performance
7 X X X X U U U X 3 5 -2 SO Teacher's Programming Knowledge
8 X X U X X U X U X 3 6 -3 SO Teacher's Pedagogical Programming

Knowledge
9 X X X X U X X X 1 7 -6 SO Student
10 X X X X X X 4 2 2 SD Training

(PD = Primary Driver; SD = Secondary Driver; SO = Secondary Outcome)

According to the Table 8, the topology of
the cluttered SID (Figure 2) was decided and
drawn: PDs at the extreme left, SDs in the
middle and SOs at the extreme right. In other
words, order of the affinities was from left to
right depending on the value of the affinities
(highest on the left and lower values from left
to right).

Figure 2.
Cluttered systems influence diagram.

This diagram was used as the interview
guide to conduct individual interviews
with participants on the affinities and their
relationships in order to collect qualitative data
on the participants’ perspective on teaching
programming. Out of 47 participants only 35
were available for interviewing. Participants
were asked to describe each affinity and
explain the relationship between affinity
pairs as per their perspective of teaching of
programming. Interview data was used for
further clarification of the affinities and the
relationship among them (Modules 2.0, 3.0,
4.0, 6.0, 7.0, 8.0 and 9.0 of the Figure 1).

The cluttered SID was refined by removing the
redundant links to arrive at the Uncluttered
SID (Figure 3). The uncluttered version of
the SID is built to simplify the SID and bring
more explanatory power to the diagram.

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming at
Secondary School Level Using Interactive Qualitative Analysis (IQA)

Page 91-106

100

Figure 3.
Uncluttered systems influence diagram.

The Figure 3 represents the perspective of
teachers towards Teaching of Computer
Programming at Secondary School Level.
The surfaced affinities and how one affinity
influences another, either directly or
indirectly, is indicated by arrows. The dotted
line indicates a feedback loop i.e. Student can
influence Teacher’s Pedagogical Programming
Knowledge through Teacher’s Programming
Skills

Descriptions of the 10 affinities

Following are the descriptions of the affinities
from the participants’ point of view resulted
from combining the individual interviews
held with the participants.

1. Programming curriculum

This is the subject matter on programming logic
and the language recommended to be used to
code the algorithms. In the current syllabus,
more emphasis is on the language which is
Visual Basic Version 6 (VB 6) (Microsoft,
1998) than the programming logic. As a result,
less time is devoted for algorithms which

are represented in flow charts and pseudo
code. Teachers are in the opinion that current
amount of subject matter is too much to cover
within the time allocated since it demands
more practical hours. Although students
seem to be enjoying the visual programming
environment, it is doubtful whether it adds
value to them in building programming logic.
Teachers complain that in the development of
programming curriculum very little attention
is paid to the other contributing factors (other
affinities) to the success of teaching subject
matter in the classroom.

2. ICT resources

Resources in this case are computers and
programming software. Computer laboratories
provided about 10 years ago lead toproblem
of breakdown of computers without sufficient
repair, thereby forcing sometimes four or
five students to share one computer. This
situation is not helpful when extensive hands-
on experience is required for students to
comprehend the subject well. Availability of
a multimedia projector which is not a luxury
enjoyed by every school, is also a good
teaching aid in teaching programming.

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming at
Secondary School Level Using Interactive Qualitative Analysis (IQA)

Page 91-106

101

3. Time

For a week, only three periods of 30 minutes
each are allocated for the ICT subject at
GCE(OL) and programming is taught in the
grade 11 or the second year of G.C.E. (O/L.).
The total subject matter for programming
prescribed for Grade 11 is too heavy and time
is not sufficient to cover the syllabus. Time is
basically what is proposed by the syllabus, but
the actual time is less than that due to various
problems in the process. Time, which is lost
due to holidays, delay in setting up of students
at the computers, computer seizures and time
lost in coming to the lab are some reasons for
that. Time needed for teachers to be prepared
for lessons is also regarded as Time in this
case. Teachers complained that they lose
valuable time as they are supposed to support
administrative functions of the school where
ICT applications are required.

4. Programming language

Currently the programming language is
prescribed in the syllabus is VB 6 which
provides a visual support to students when
they learn programming. This is viewed as a
supportive environment to learn programming.
On the other hand, as this is an application
developer’s language with numerous facilities
to expedite programming, students are likely
to fail in converting a flow chart or pseudo
code into computer program. Hence, it is
required to use a suitable teaching language
for this purpose. If it is a WYSIWYG type
or programming language, which provides
outcome of the program being executed
immediately juxtaposed with the code
typed in the editor of the programming tool,
students would get a solid knowledge about
programming.

5. Evaluation

Evaluation in this respect is the national
examination conducted by the Examination
Department of Sri Lanka at G.C.E. (O/L).
There seems to be a mismatch between
the subject matter and the questions on
programming. Students are evaluated only
on flow charts or pseudo codes but not on
the coding language for which teachers make
much effort to teach in the classroom. The
only factor the evaluators consider is the
programming curriculum but not any other
contributing factor (affinity) emerged in this
study. However, some teachers believe that
fair questions are set to offset the difficulties
faced by many students in a variety of school
set-ups. Although about 1/3 of the syllabus is
allocated to programming, only one essay type
question appears in the question paper which is
an unjustifiable proportion. On the other hand,
programming questions, sometimes spanning
across one and half pages of the question
paper, could distract students in selection and
discourage answering them.

6. Performance

Performance is referred to as how successful
students are when they answer programming
questions at G.C.E. (O/L) examination. Few
marking examiners in the sample had observed
that in most cases very few candidates attempt
to answer programming questions and they
either answer programming questions very
successfully or very weakly. Inadequate
knowledge on programming concepts may be
the reason behind this disappointment.

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming at
Secondary School Level Using Interactive Qualitative Analysis (IQA)

Page 91-106

102

7. Teacher’s programming skills

Teacher’s programming skills consist of
knowledge of algorithms and coding a given
algorithm in prescribed computer language in
the syllabus. The participants admitted that
this is a challenging part in the syllabus. Fewer
attempts are made by teachers to develop
algorithmic skills as the majority of the
subject matter covers the use of programming
language. It is the common agreement that
an in-depth knowledge on programming is
essential to teach the subject content.

8. Teacher’s pedagogical knowledge on
programming

This is basically about how to teach
programming using suitable instructional
strategies. No participant knew any such
strategies. Demonstration followed by
exercises, answers to which are discussed later
is the general practice. This may be best suited
for teaching how to use the programming
language only. Participants agreed that
problem, solution to it in a flow chart, writing
pseudo code from the flow chart, coding it
with the programming language and finally
executing the program on the computer should
be the right way to teach programming.

9. Student

Students who learn programming are
perceived as the most significant affinity of
this scenario. It was highlighted that students
like to use the visual programming language
packages to play around changing properties
of the objects like forms, text boxes and
buttons rather than implementing algorithms.
Although knowledge of English would not

be a big issue for students in learning how
to use the programming language, it could
be a drawback on students in the area of
flow charting and pseudo coding. However,
majority of students are found to be grappling
with learning of programming.

10. Professional development programs

Professional development programs should
be conducted either centrally by NIE, MOE or
by in-service advisors at zonal education level
in order to enhance the quality of teachers in
the area of programming and its pedagogy.
The impact of such programs is deferred but,
participants did not deny the value-adding
nature of such programs. Although subject
matter is properly dealt with in these sessions,
very little attention is paid to the pedagogical
aspects of programming. Teachers preferred
face-to-face type of professional development
sessions on programming concepts, use
of programming language for coding and
instructional design on programming concepts
and coding.

Results of the interviews guided by the
cluttered SID

In order to make teachers more effective
in teaching, the significant affinities are
teachers’ programming skills and their
pedagogical programming knowledge.
Pedagogical knowledge is only influenced by
the programming knowledge which in turn is
directly influenced by questions set in the ICT
question paper of the GCE(OL) examination,
ICT resources available to them in ICT
laboratories and professional development
programs for teachers. Teachers are compelled
to update their programming knowledge having

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming at
Secondary School Level Using Interactive Qualitative Analysis (IQA)

Page 91-106

103

taken the feedback from students’ display of
programming knowledge which might have
been acquired via alternative means like the
Internet. Two directly influencing factors on
students are time and teachers’ pedagogical
programming knowledge. Complexity of
programming language prescribed by the
curriculum demands more time to cover
the programming content and on the other
hand, poor performance of the students at
GCE(OL) drives teachers to allocate more
time for teaching of programming. In this
scenario teachers have viewed that students
are directly responsible for their performance
and remaining affinities are only indirectly
responsible for their success. The circular
relationship of students─►performance
─►time─►students (Ref. Figure 3) when
coupled with the findings in group and
individual interviews with participants
indicates that the poor performance of students
demand increase in instructional time which
is in turn helpful to students.

Teachers are not happy about ICT resources
available for teaching programming. They
commented “The number of computers is
not enough for practical and as a result more
than 2 students have to share a computer”.
They think time allocated for programming
section is not sufficient as evident from
“There are too many topics in the syllabus
to cover and time allocation is not enough to
teach algorithms and practical”. They believe
prescribed programming language is not
suitable. They commented “Students tend to
play with object in the IDE and it obliterates
logical reasoning needed for programming”.
Teachers are in the opinion that students
display poor performance in programming at
GCE (OL) and it is believed that students are

reluctant to learn programming. Teachers were
neutral about the programming questions
in GCE (OL) ICT question paper, teachers’
pedagogical programming knowledge and
professional development programs. The only
aspect they were positive about is their own
programming knowledge.

Teachers believe that programming
curriculum influences all the other affinities.
ICT resources required, allocation of time,
type of programming language, programming
questions of ICT question paper and students
learning curve are determined by the
programming curriculum. It also dictates
teachers’ pedagogical practice and nature of
professional development programs. ICT
resources facilitate teachers’ pedagogical
practice and students’ performance. Selection
of computer languages should not levy
unnecessary overhead on both teachers’
practice and students’ performance. This is
supported by the comment “Students should
get a simple IDE where they can type codes
and test them easily”. How programming
knowledge is evaluated could be an eye-
opener for teachers to update and upgrade their
programming and its pedagogical knowledge
as evident from “In the exam what is tested
is not coding but logic behind the solution
to problems. Usually in the exam problem
solving is not asked but fill-in the blank of a
program is expected.”. Teachers complain that
poor performance of students at GCE (OL)
examination push them to conduct after-school
classes to gain more time for teaching. They
have not underestimated the significance of
professional development programs since such
programs provide the opportunity for teachers
gain both programming and pedagogical
programming knowledge that eventually

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming at
Secondary School Level Using Interactive Qualitative Analysis (IQA)

Page 91-106

104

could ensure a successful instructional process
in the classroom. However, they complain that
“Enough in-service training is not provided
on how to teach programming”.

It is suggested that teachers should undergo
comprehensive professional development
programs that address programming
knowledge and relevant pedagogical
knowledge. One teacher complained that
“Sometimes I feel embarrassed when certain
students bring problems that I cannot write
programs easily”. The ICT curriculum must
be reviewed to reconsider the programming
language being used at present. Student-
centered pedagogy must be encouraged, and
students should be involved in solving more
programming problems.

Conclusions and Recommendations

The goal of this study was to model the
perspectives of the ICT teachers towards
teaching of computer programming at
GCE (OL). The affinities emerged were
programming component of the ICT
curriculum, ICT resources, time, programming
language, evaluation at national level,
performance of students of programming
questions at GCE (OL), programming skills
of the teachers, pedagogical programming
knowledge of the teachers, students and
professional development programs of ICT
for teachers.

Most influencing aspect of the teachers’
perspective is the programming curriculum
which needs to be reduced in content. To
make teachers more effective in teaching
the significant affinities are teachers’
programming knowledge and their pedagogical

programming knowledge. Teachers are
compelled to update their programming skills
to meet students’ demands for which they
expect effective professional development
programs. Two directly influencing factors on
students are time and teachers’ pedagogical
programming knowledge. Complexity of
programming language prescribed by the
curriculum demands more time to cover
the programming content and on the other
hand, poor performance of the students at
GCE(OL) drives teachers to allocate more
time for teaching of programming. Selection
of computer languages should not levy
unnecessary overhead on both teachers’
practice and students’ performance. Lack of
ICT resources in the school sector is a cause
of poor coding skills of the students although
coding skills are not evaluated at the GCE(OL)
examination. However, how programming
knowledge is evaluated could be an eye-
opener for teachers to update and upgrade their
programming and its pedagogical knowledge.

Based on the findings of the study, several
recommendations are made. The programming
curriculum should be reduced in content with
a suitable replacement for the current coding
language and the teachers should be instructed
to spend more time on teaching algorithms than
coding. Professional development programs
should pay more attention to pedagogical
programming knowledge for teachers.
Authorities should ensure that number of
computers in school ICT laboratories should
be increased so that at least two students can
share a computer for coding purposes.

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming at
Secondary School Level Using Interactive Qualitative Analysis (IQA)

Page 91-106

105

References

Ala-Mutka, K. (2004). Problems in learning
and teaching programming-A literature
study for developing visualizations
in the Codewitz-Minerva Project.
Codewitz Needs Analysis, 1-13.
Retrieved from: www.cs.tut.fi/~edge/
literature_study.pdf .

Behling, G., L.enzi, F. C., & Rossetto.
C. R. (2022). Upcoming Issues,
New Methods: Using Interactive
Qualitative Analysis (IQA) in
Management Research. Journal of
Contemporary Administration, 26(4),
1-18. https://doi.org/10.1590/1982-
7849rac2022200417.en.

Chandrakumara, D. P. S. (2015). Regional
Imbalances in the Distribution of
Educational Resources in Sri Lanka.
International Journal of Applied
Research, 1(11), 13-21.

Dağ, F., & Durdu, L. (2020). Teacher Views
on Programming Teaching. Adiyaman
Univesity Journal of Educational
Sciences, 10(2), 70-86.

 doi :h t tp : / /dx .doi .org /10 .17984/
adyuebd. 629428.

European, S. (2015). Computing our future.
Retrieved from http://www.eun.
org/documents /411753/817341/
Computing+our+future_final_2015.
pdf/d3780a64-1081-4488-8549-
6033200e3c03.

Garner, S. (2007). A program design tool
to help novices learn programming.

Proceedings ascilite Singapore, 321-
324.

Jones, S. P., Stephenson, C., & Bell, T. (2011).
Computing at school: International
comparisons. Microsoft research
UK, Version 5. Retrieved from http://
www.computingatschool.org.uk/data/
uploads/internationalcomparisons-v5.
pdf.

Korkmaz, Ö. (2014). A validity and reliability
study of the Attitude Scale of Computer
Programming Learning (ASCOPL).
MEVLANA International Journal of
Education. 4(1), 30- 43, http://dx.doi.
org/10.13054/mije.13.73.4.1.

Lasserre-Cortez, S.(2006). A Day in The Parc:
An Interactive Qualitative Analysis 0f
school climate and teacher effectiveness
through professional action research
collaboratives. [Unpublished doctoral
dissertation]. The Department of
Educational Leadership Research
and Counseling. Graduate Faculty of
the Louisiana State University and
Agricultural and Mechanical College.

Maloney, J., Peppler, K., Kafai, Y., Resnick,
M., & Rusk, N. (2008). Programming
by Choice: Urban Youth Learning
Programming with Scratch. Retrieved
from http://web.media.mit.edu/~mres/
papers/sigcse-08.pdf.

Makris, D., Euaggelopoulos, K.,
Chorianopoulos, K., & Giannakos,
M. (2013). Could you help me to

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming at
Secondary School Level Using Interactive Qualitative Analysis (IQA)

Page 91-106

106

change the variables? Comparing
instruction to encouragement for
teaching programming. WiPSCE
’13, Aarhus, Denmark. 11-13.
doi:10.1145/2532748.2532761.

Microsoft. (1998). Microsoft Visual Basic
6 . h t t p s : / / w w w. m i c r o s o f t . c o m /
en-US/Download/conf i rmat ion .
aspx?id=10019.

National Institute of Education (2008).
Information and Communication
Technology Syllabus: Grade11.
Maharagama, Sri Lanka.

Northcutt, N., & McCoy, D. (2004).
Interactive Qualitative Analysis:
A Systems Method for Qualitative
Research. California: Sage
Publications Inc, https://doi.
org/10.4135/9781412984539.

Saeli, M., Perrenet, J., Wim, M. G., Jochems,
W. M .G., & Zwaneveld, B. (2011).
Teaching Programming in Secondary
School: A Pedagogical Content
Knowledge Perspective. Informatics in
Education,10(1), 73-88.

Salleh, S. M., Shukura, Z., & Judib, H.
M. (2013). Analysis of Research in
Programming Teaching Tools: An
Initial Review. 13th International
Educational Technology Conference.
, Sakarya Universitesi, Turkey doi:
10.1016/j.sbspro.2013.10.317.

Sarpong, K. A., Arthur, J. K., & Amoako,
P. Y. O. (2013). Causes of Failure of
Students in Computer Programming

Courses: The Teacher - Learner
Perspective. International Journal of
Computer Applications, 77(12), 27-32.

Shulman, L. S. (1986). Those who understand:
knowledge growth in teaching.
Educational Researcher, 15, 4-14.

Yang, T. C., Hwang, G. J., Yang, S. J. H.
& Hwang, G. H. (2015). A Two-tier
test-based approach to improving
students’ computer programming skills
in a Web-based learning environment.
Educational Technology & Society,
18(1), 198-210.

Modeling the ICT Teachers’ Perspective Towards Teaching of Computer Programming at
Secondary School Level Using Interactive Qualitative Analysis (IQA)

Page 91-106

